Fully-Worked Solutions

PRACTICE 2

Section A

- - 28 is not a factor of 144.

Answer: C

2 462 cannot be divided completely by 13, thus 13 is not a prime factor.

Answer: D

- 3 1×126
 - 2×63
 - 3×42
 - 6×21
 - 9×14
 - 14 and 21 are factors of 126, but 3 is not a factor of 14. Answer: D
- **4** 1 × 360
- 8×45
- 2×180
- 9×40
- 3×120
- 10×36
- 6×60
- 12×30
- 4×90
- 15×24
- 5×72

- 18×20
- The number of factors of 360 is 24.

Answer: B

- 5 $90 = 2 \times 3^2 \times 5$, $140 = 2^2 \times 5 \times 7$,
 - $200 = 2^3 \times 5^2$, $320 = 2^6 \times 5$
 - 2 + 3 + 5 = 10

Answer: A

- 6 Answer: D
- 7 Answer: C
- **8** 1 × 84

 - 2×42
- 4×21 6×14

- 7×12
- 8 is not a factor of 84, thus 84 is not a multiple of 8.

Answer: C

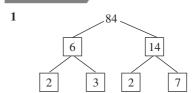
- 2 | 4, 6, 9
 - 2 2, 3, 9
 - 3 1, 3, 9
 - 3 | 1, 1, 3 1, 1, 1

 $LCM = 2 \times 2 \times 3 \times 3 = 36$

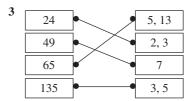
Answer: B

- 10
- 2 | 8, 12, 16 2 4, 6, 8 2, 3, 4

$$HCF = 2 \times 2 = 4$$


- 2 | 8, 12, 16 2 4, 6, 8 2 2, 3, 4
- 2 | 1, 3,

$$LCM = 2 \times 2 \times 2 \times 2 \times 3 = 48$$


Sum = 4 + 48 = 52

Answer: C

Section B

- 2 (a) FALSE
 - (b) TRUE
 - (c) TRUE
 - (d) FALSE

4						
4	2	6	9	8	7	11
	13	(5)	3	12	14	10
	20	30	35	28	70	60

Section C

1 (a) 3 | 6, 12, 18 2 2, 4, 6

$$LCM = 3 \times 2 \times 2 \times 3 = 36$$

$$HCF = 3 \times 2 = 6$$

Difference
$$= 36 - 6 = 30$$

(b) (i)
$$48 = 2^4 \times 3$$

 $72 = 2^3 \times 3^2$

(ii) HCF =
$$2 \times 2 \times 2 \times 3 = 24$$

LCM = $2 \times 2 \times 2 \times 2 \times 3 \times 3 = 144$

(c) Factors of $24 = \underline{1}, \underline{2}, 3, \underline{4}, 6, \underline{8}, 12, 24$ Factors of $32 = \underline{1}, \underline{2}, \underline{4}, \underline{8}, 16, 32$ Common factors = 1, 2, 4, 8

$$HCF = 3 \times 3 \times 2 = 18$$

- (b) (i) Factors of 42 = 1, 2, 3, 6, 7, 14, 21, 42 $x = 6 \times 3 = 18$
 - (ii) 3 | 18, 42 2 | 6, 14 3 | 3, 7 7 | 1, 7 1, 1

$$LCM = 3 \times 2 \times 3 \times 7 = 126$$

(c) Multiples of 13 = 104, 117, 130, 143, 156, 169, 182, 195

Number of multiples = 8

- 3 (a) Factors of 48 = 1, 2, 3, 4, 6, 8, 12, 16, 24, 48 y = 2, 3, 6, 8, 12, 16, 24
 - (b) 3 | 18, 24 2 | 6, 8 2 | 3, 4 2 | 3, 2 3 | 3, 1

LCM =
$$3 \times 2 \times 2 \times 2 \times 3 = 72$$

Number of mint candies

$$=\frac{72}{18}$$

= 4

Number of fruit candies

$$=\frac{72}{24}$$
$$=3$$

(c) Factors of 72 = 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72 z = 12, 18, 24, 36