Fully-Worked Solutions

PRACTICE 9

Section A

1 Speed =
$$\frac{200 \text{ m}}{20.63 \text{ s}}$$

= 9.69 m s⁻¹

Ahmad wins because his time taken is shorter.

Answer: C

2 A straight line graph represents uniform speed. Answer: A

3 The hand of clock moves an equal distance over equal time interval.

Answer: D

4 Speed =
$$\frac{174 \text{ km}}{2.5 \text{ h}}$$

= 69.6 km h⁻¹

Answer: B

5
$$175 \text{ m/s} = \frac{175 \text{ m}}{1 \text{ s}}$$

= $\frac{175 \div 1000 \text{ km}}{1 \div 60 \text{ min}}$
= 10.5 km/min

Answer: C

6 Distance =
$$(28 \times 3 \times 60)$$
 m
= $5 040$ m
= $\frac{5 040}{1 000}$ km
= 5.04 km

Answer: B

7 Distance = Speed × Time
=
$$87 \times 2\frac{1}{3}$$
 km
= $87 \times \frac{7}{3}$ km
= 203 km

Answer: D

8 Time =
$$\frac{187 \text{ km}}{68 \text{ km/h}}$$

= 2.75 h

Answer: C

9 Time =
$$\frac{300}{80}$$
h
= 3.75 h
Average speed = $\frac{300}{4.25}$ km/h
= 70.59 km/h

Answer: A

10 Speed =
$$\frac{286 \text{ km}}{3.25 \text{ h}}$$

= 88 km/h

Answer: B

11 96 km/h =
$$\frac{96 \text{ km}}{1 \text{ h}}$$

= $\frac{96 \text{ km}}{60 \times 60 \text{ s}}$
= $\frac{2}{75}$ km/s

Acceleration =
$$\frac{\left(\frac{2}{75} - 0\right) \text{ km/s}}{8 \text{ s}}$$
$$= 0.00333 \text{ km/s}^2$$

Answer: A

12 Acceleration =
$$\frac{18 - 8}{5}$$
$$= 2 \text{ m/s}^2$$

Answer: D

13 Acceleration =
$$\frac{0-24}{20}$$

= $\frac{-24}{20}$ m/s²
= -1.2 m/s²

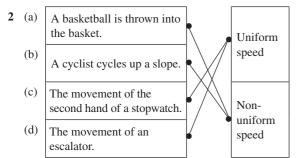
Answer: A

14 Acceleration =
$$\frac{0 - 80 \text{ km/h}}{8 \text{ s}}$$

= -10 km/h per second
Deceleration = 10 km/h per second
Answer: C

15 Acceleration =
$$\frac{105 - 65 \text{ km/h}}{15 \text{ min}}$$
$$= \frac{40 \text{ km/h}}{\frac{1}{4} \text{ h}}$$
$$= 160 \text{ km/h}^2$$

Answer: D


16 Acceleration =
$$\frac{36 - 68 \text{ m/min}}{5 \text{ min}}$$
$$= -\frac{32}{5} \text{ m/min}^2$$
$$= -6.4 \text{ m/min}^2$$
Deceleration = 6.4 m/min²
Answer: **B**

17 Acceleration =
$$\frac{12 - 0}{\frac{2}{3} \times 60 \text{ s}}$$
$$= \frac{12 \text{ m/s}}{40 \text{ s}}$$
$$= 0.3 \text{ m/s}^2$$

Answer: A

Section B

- 1 (a) X
 - (b) 🗸
 - (c) 🗸
 - (d) X

3 (a) (i)
$$108 \text{ km/h} = \frac{108 \text{ km}}{1 \text{ h}}$$

$$= \frac{108 \times 1000 \text{ m}}{60 \text{ min}}$$

$$= 1800 \text{ m/min}$$
(ii) $90 \text{ cm/s} = \frac{90 \text{ cm}}{1 \text{ s}}$

$$= \frac{90 \div 100 \text{ m}}{1 \div 60 \text{ min}}$$

D = Distance

S = Speed

T = Time

 $D = S \times T$

$$S = \frac{D}{T}$$

$$T = \frac{D}{S}$$

(i)	Distance = Speed × Time	1
(ii)	Speed = Time Distance	
(iii)	$Time = \frac{Distance}{Speed}$	1

4 (a)
$$680 \text{ m/min}^2 = \frac{680 \text{ m}}{1 \text{ min}^2}$$

$$= \frac{680 \div 1000 \text{ km}}{1 \text{ min}^2}$$

$$= 0.68 \text{ km/min}^2$$

$$96 \text{ km/h}^2 = \frac{96 \text{ km/h}}{1 \text{ h}}$$

$$=\frac{96 \text{ km/h}}{3600 \text{ s}}$$

= 0.0267 km/h per second

- (b) (i) Deceleration: Speed decreases
 - (ii) Acceleration: Speed increases

Section C

1 (a) (i) Distance =
$$18 \times 3 \times 60 \text{ m}$$

= 3 240 m
= (3 240 ÷ 1 000) km
= 3.24 km

(ii) Time =
$$\frac{720 \text{ m}}{18 \text{ m/s}}$$

= 40 s

(b) (i) Distance = 86 km/h ×
$$1\frac{1}{2}$$
 h

$$= 86 \times \frac{3}{2} \text{ km}$$

$$= 129 \text{ km}$$

(ii) Total distance =
$$129 + 129$$

= 258 km

Total time taken

$$= 1.5 + 1.5 + 0.5$$

= 3.5 h

$$= 3.5 1$$

Average speed =
$$\frac{258 \text{ km}}{3.5 \text{ h}}$$

= 73.71 km/h

(c) Acceleration =
$$\frac{(75-90) \text{ km/h}}{15 \text{ min}}$$

= $\frac{-15 \text{ km/h}}{\frac{15}{60} \text{ h}}$
= $-15 \times \frac{60}{15} \text{ km/h}^2$
= -60 km/h^2

Deceleration = 60 km/h^2

2 (a) (i) Acceleration = -1.5 m/s^2

$$\frac{0-v}{8} = -1.5$$

$$-v = -1.5 \times 8$$

$$= -12$$

$$v = 12$$

(ii) Distance =
$$v \times 10$$

= 12×10
= 120 m

(b) Distance travelled in the first two hours $=75\times2$

= 150 km

Remaining distance =
$$348 - 150$$

= 198 km

Time taken (Second part) = x hours 1130 - 0615 = 515

5 hours 15 min = 5.25 hours

2 + 0.5 + x = 5.25

$$x = 5.25 - 2 - 0.5$$
= 2.75
Average speed = $\frac{198 \text{ km}}{2.75 \text{ h}}$
= 72 km/h
Car *P*:

(c) Car *P*:

$$Time taken = \frac{400 \text{ km}}{80 \text{ km/h}}$$

$$= 5 h$$

Car
$$Q$$
:
Speed = $\frac{200 \text{ km}}{2 \text{ h}}$
= 100 km/h
Time taken = $\frac{400 \text{ km}}{100 \text{ km/h}}$
= 4 h
Difference in time = $5 - 4$
= 1 h